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A discrete element method for composite 
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Abstract-Green’s functions for steady-state, one-dimensional heat conduction for discretely inhomo- 
geneous media are found by using an interactive principle. Exact solutions can therefore be expressed by 
Green’s representation. An unsteady problem is solved numerically by treating the time derivative as a 

source term. The results demonstrate accuracy, stability, and efficiency. 

INTRODUCTION 

COMPOSITE materials are widely used. An example is 
large-scale integration of electrical circuits in com- 
puters and electronic devices. The high circuit density 
(which can be on the order of 2.5 x 10’ per cubic 
meter) results in a serious heat conduction problem 
(with heat fluxes on the order of 100 kW m-‘) [l]. 
In computer module design, an efficient method is 
required to predict heat transfer fields in three-dimen- 
sional, discretely inhomogeneous media [ 11. One- 
dimensional problems of heat conduction in layered 
solids can be solved analytically by the Laplace trans- 
form method [2, pp. 319-3261. A general integral 
transform technique can also be used to provide a 
systematic method for solving boundary-value prob- 
lems of heat conduction in composite media [3, p. 
5941. The final solution of temperature in this 
approach appears in the form of an infinite series in 
terms of the eigenfunctions. Although such solutions 
can be expressed analytically, they are difficult to 
evaluate since the eigenvalue problem is complex 
when the number of layers of the composite media is 
large. The Green’s function niethod is another power- 
ful tool for solving partial differential equations [3- 
7]. A Green’s function formulation is presented in ref. 
[3, p. 6041 for the temperature distribution in a layered 
material. A newly published book by J. V. Beck et al. 

[7] gives Green’s function solutions for heat con- 
duction with various boundary conditions. A Galer- 
kin-based Green’s function method for heat con- 
duction with position-dependent coefficients is used 
to obtain an approximate solution [7, pp. 293-3561. 
The Green’s functions used in refs. [3, 71 for layered 

t This paper is dedicated to Dr Ajay Sharma who lost his 
life in a tragic automobile accident during the work. 

media are local Green’s functions that are matrices 
whose indices indicate the position of the source and 
the layer. In ref. [8] a global Green’s function for 
an unsteady-state, N-layer structure is developed in 
Laplace transform space to solve an axisymmetric 
problem with volume heat sources. 

This paper blends both analytic and numerical con- 
cepts into an efficient solution process for solving a 
prototype, one-dimensional, heat conduction prob- 
lem for discretely inhomogeneous media. A simple 
form of the global Green’s function for composite 
media in the steady-state case is found by making 
a change of variable and using the superposition 
principle. The temperature distribution is expressed 
directly by Green’s representation. 

To solve an unsteady problem, the power of Green’s 
representation is used by treating the derivative of 
temperature with respect to time as a forcing function 
(inhomogeneous term). A finite difference scheme in 
time leads to discretized, simultaneous, algebraic 
equations for the unknown temperature at each point, 
including the interfaces. The solution is no longer 
analytic, but the analytical form of the solution is 
present through Green’s_like matrices that show how 
the boundary condition affect the solution. Numerical 
results are presented for a specific problem. Extension 
to multidimensional media is required, but the con- 
cepts introduced here have applications to all physical 
phenomena supported on a continuous media. 

GREEN’S REPRESENTATION FOR 

HOMOGENEOUS MEDIA 

First consider a one-dimensional, steady-state heat 
conduction problem where the temperature T satisfies 

d2T 
dX2 = -f(x)/k, 0 < x < 1. (1) 
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NOMENCLATURE 

cross section area of a rod [m’] 
matrix used for solving unsteady-state 
problem 
coefficient in boundary conditions 
coefficient in boundary conditions 

matrix used for solving unsteady-state 
problem 

AR 
T 

T, 

T2 

coefficient in boundary conditions t 
coefficient in boundary conditions to 
specific heat capacity w s kg- ’ “C- ‘1 At 

unit matrix X 
internal source density [W m-‘1 
reference source density [W m- ‘1 
Green’s function 
right hand side function in the left hand 
side boundary condition 
right hand side function in the right hand 

side boundary condition 
Heaviside step function 
thermal conductivity [W mm ’ “Cm ‘1 

Greek symbols 

1 
derivative of the boundary temperature 
Delta function 

; 

thermal diffusivity [m’ s- ‘1 
the position of the heat source [m] 

P density [kg mm ‘1 
0 dimensionless parameters. 

I length of a rod [m] 
M number of subintervals in a composite 

rod for numerical computation 
P matrix used for solving unsteady-state 

problem 

Q matrix used for solving unsteady-state 
problem 

1 
heat flux [W m-“1 
heat resistance [“C W- ‘1 

RL total dimensionless heat resistance of 
composite rod [“C W- ‘1 

the increment of R [-C W ‘1 
temperature [“Cl 
boundary temperature at the left end [’ C] 
boundary temperature at the right end 

rc1 
dimensionless temperature at the 
interface 
time [s] 
reference time [s] 
the increment of time [s] 
physical space [ml. 

Subscripts 
1 quantities in/for block 1 
2 quantities in/for block 2 
n quantities in/for block n. 

Superscripts 

,, 

dimensionless quantities 
local running variable in block 1 
local running variable in block 2. 

Here f is the internal source density and k the thermal 
conductivity. General boundary conditions are 

A,T+B,g=g,, x = 0, 

A,T+B,g=g2, x = I, (3) 

where the As and Bs are given constants. The Green’s 
function, G(x, <), is a field (response) at point x due 
to a point source (probe) of unit strength at point 5 
under certain boundary and initial conditions. The 
Green’s function corresponding to the above problem 
satisfies [5, p. 541 

d2G 
p = -G-O 

and the homogeneous boundary conditions 

A,G+B,;;=O, x=0, 

A,G+B2g=0, x=1. (6) 

Standard manipulations [7, p. 661 of this formulation 
leads to a solution in the form 

T(x) = 
s 

’ G(x, 5MWl d5 II 

1 1 
+ gGl,=,gz- ++og,. (7) 

2 I 

Equation (7) is called Green’s representation for 
Robin boundary conditions. Once the Green’s func- 
tion is known and the boundary conditions are given, 

the temperature distribution can be obtained from the 
Green’s representation. The special cases of Dirichlet 
and Neumann boundary conditions can also be 
obtained. 

GREEN’S REPRESENTATION IN 

INHOMOGENEOUS MEDIA 

The Green’s representation developed above is 
valid in a homogeneous medium. Extension to inhomo- 
geneous media is required. Consider a composite 
rod consisting of two blocks with conductivities k, 
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and k, as the model of an inhomogeneous region. 
At the interface, x = x,, the heat flux is continuous 
as expressed by 

k,g 
dx x=x; 

=k2g 
dx .=,:’ (8) 

Equation (8) shows that the first derivative of tem- 
perature is not continuous at the interface. For com- 
posite material with perfect thermal contact the tem- 
perature is a single valued function of position, and 
the Green’s function can be viewed as a temperature 
distribution caused by a unit source in block 1 or block 
2. Hence, the Green’s function itself is continuous 
everywhere, including the interface, but the first 
derivative of Green’s function with respect to x has a 
jump at the interface. Consequently its second deriva- 
tive at the interface becomes a d-function just like 
the one at the source position. The Green’s function 
would therefore satisfy 

a2G 
I 

jp = -6(x-x)-6(x--~), (9) 

where x’ locates the internal boundary. It can be 
shown that the temperature at the interface, which 
is unknown before the problem is solved, would be 
involved in the Green’s representation if a Green’s 
function is hypothesized for the composite medium. 
Therefore, the temperature cannot be obtained 
explicitly. To resolve this difficulty, the heat resistance, 
R, is introduced as a variable instead of x in the form 

s X 
R= kAdx, 

where A is the cross section area. This variable makes 
the first derivative of the Green’s function continuous 
everywhere (except at the source). A reference quan- 
tity R, , the total heat resistance in block 1, is chosen 
to normalize the global running variable R” such that 

where R’ and R” are local dimensional running vari- 
ables in block 1 and block 2, respectively. The quan- 
tities R”’ and R” are local dimensionless running 
variables. The dimensionless Green’s function for a 
composite rod satisfies 

a% 
== -&?-[), O<R,(<l+$ (12) 

This equation has the same form as that governing a 
homogeneous medium. Therefore, the Green’s rep- 
resentation which is valid in a homogeneous domain 
can be extended to the inhomogeneous media. For 
heat conduction in a two-block composite rod, the 
dimensionless temperature satisfies 

d2F 
m= -a,3,, 0 < l? < 1, (13) 

d2T 
m= - a,?~> (14) 

where cr, =&1:/k, T,, and c2 = f,l:/k,T,, are dimen- 
sionless parameters and R, and R, are the total ther- 
mal resistance in block 1 and block 2, respectively. 
The Robin boundary conditions are 

dp _ 
A,T+B,z=J,, R=O, (15) 

and 

dF _ R2 
A2T+B2s=@2, R= l+K. (16) 

The Green’s representation takes the form 

F’(R) = b10,f,Bd~+~+‘~2’R”.2j;CdC 

1 _ 1 
+ $Ye= I+(R2,R,)#2- B c”le=os”,. (17) 

2 I 

The Green’s representation for any n-block composite 
rod can be written by changing the integral terms 
to n individual integrals over each block. Green’s 
representations for Dirichlet and Neumann boundary 
conditions for an n-block composite medium can also 
be obtained. 

GREEN’S FUNCTIONS FOR HOMOGENEOUS 

MEDIA 

For heat conduction in a homogeneous medium, 
the dimensionless Green’s function satisfies 

a% 
m= -6(R"-5"), o<R",5"< 1, (18) 

and the homogeneous Robin boundary conditions 

ac” _ 
A,G+B,g=O, R=O, (19) 

and 

ac" _ 
A2G+B2z = 0, R = 1. (20) 

The Green’s function is obtained by solving equation 
(18) directly [7, p. 4781. The solution can be written 
in the form 

G”(R, fl= 

(AIR”-B,)[A,U -0++2j 

A,A,+A,B,-A,B, ’ 

(AIF-B,KMl-&+&I 
A,A,+A,B,-A,B, ’ 

(21) 

The Green’s function for Dirichlet boundary con- 
ditions 
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G(R,f)[)lH_=,) = 0, G(k, ;‘,I,-> , = 0, (22) where p, is the temperature at the interface. The solu- 

can be easily obtained by setting A, = I, B, = 0, 
tion of this problem, (!?,, is found using Green’s rep- 

Az=landBz=Oasfollows: 
resentation of equation (17) to be 

The third problem is the heat conduction in block 2 
By setting A, = I, B, = 0, A, = 0, and B, = 1, the with the boundary conditions given by 
Green’s function for the Neumann boundary con- 
ditions of G1j = ?,, i? = 0, (35) 

C(RQla=o =o, aff = , 
ac”@,O o 

(24) 
A$,+&$=O, &;, (36) 

R= I 
I 

gives 
where p is the local running variable in block 2. The 

solution of this problem, G”,, is again found through 

0 < l? d f, Green’s representation to be 

g<a<1. (25) 

These Green’s functions set the stage to obtain the 
&JR”, [) = ] - ---~-- (37) 

Green’s functions for composite media. 

GREEN’S FUNCTIONS FOR COMPOSITE 

MEDIA 

Heat conduction in a two-block composite rod with 
Robin boundary conditions is considered next. The 
Green’s function satisfies 

a2G 
m= -6(R”-5”), o<II,f< I+$ (26) 

I 

and the homogeneous Robin boundary conditions are 

aG _ 
A,G+B,z=O, R=O, (27) 

aG - R2 
A2&B2s=0, R= I+R,. (28) 

Superposition can be applied to decompose the prob- 
lem into three simpler problems shown in Fig. 1 (see 
ref. [9] for similar arguments). The first problem is the 
heat conduction in block 1 with a point source at [ 
and boundary conditions 

A,C?,+B,g=O, R”=O, (29) 

CT, =o, W=l. (30) 

The solution of this problem, (?, , can be obtained by 
setting A, = 1, B, = 0 in equation (21) to give 

(31) 

The solution of the original problem, C?, can therefore 
be written as 

Substituting the expressions of c?,, G,, and G, into 
the equation above leads to 

‘(A,a-B,)U-5”) + (AA-&$ 
A, -B, A,-B, ” 

O<W<[, 

(A&W-~) I (AIR-B,) F 

AI-B, A,-B, ” 

Matching the flux at the interface gives 

aC -(A,&B,)+A,z 
s 8=,_ =--------A, -B, 

-A,? LX? 

p=z&,.’ 
A2;A+B2 

(40) 

I 

which leads to the temperature at the interface, p,, as 

The second problem is the heat conduction in block 
1 under the boundary condition 

ac, 
A,G,+B,==O, R=O, (32) 

c’,=z W=l, (33) Substituting F, into the expression of C? and doing 
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+ A&B,%=0 

I 

8, =T, 

(1) 

+ F, =T, A&+B.$$‘=o 

FIG. 1. Decomposition of two-block rod. 

some algebra, the Green’s function for the two-block 
composite media with Robin boundary conditions 
can be obtained as 

G”(W,[) = 

*. 

(42) 

Following the same procedure, the Green’s function 
for any n-block composite rod can be derived and 
takes the form 

G(k, f) = 

I, 

, 

Note that the expressions of Green’s functions have 
only two formulations depending on the relative pos- 
ition of the source and the observation point, irres- 
pective of which block contains the source. 

Using approp~ate values of A’s and B’s, the 
Green’s function for an n-block composite rod subject 



3014 S. Hou ei al. 

to Dirichlet boundary conditions given by 

G(R, &=” = 0, C(R aI-= -0 R I+(R2:R,)+ +(R”IR,) - ) 

(44) 

takes the form 

(45) 

For the Neumann boundary conditions expressed as 

G(k, [)1,&o = 0, 

= 0, (46) 
li=,+(RI,R,)+“.+(R,!R,) 

the Green’s function is 

Comparing these formulas with those for homo- 
geneous media with RL = 1 +(R,/R,)+.‘.+(R,/R,) 

as the total dimensionless thermal resistance of the 
composite rod, the formulations of the Green’s func- 
tion of composite media are structurally the same 
as those for homogeneous media with corresponding 
boundary conditions. 

The steady-state heat conduction problem of a com- 
posite rod under different boundary conditions with 
constant heat generation can be solved analytically by 
solving the differential equations directly and imple- 
menting the boundary and interface conditions [lo]. 
That solution can be used to check the present Green’s 
function approach. The results are exactly the same. 
However, the present approach is valid and executable 
for arbitrary internal source distributions and any 
number of discrete blocks. 

UNSTEADY-STATE CONDUCTION IN 
COMPOSITE RODS 

The fact that a Green’s function exists for com- 
posite media opens up unique solution approaches. 
Consider time dependent heat conduction in a homo- 
geneous rod of length 1. If R, the thermal resistance, is 
used as the independent variable the nondimensional 
governing equation is 

a%? 12 ai: aT _i = __... .-.; = B .-.~ 

aR KtO at at ’ 
i>O,O<R”< 1, (48) 

where K = k/pc is the thermal diffusivity. Here I_’ is 
the density, c the specific heat and rr = 12/lcto a dimen- 
sionless parameter. 

The unsteady Green’s function for a homogeneous 
rod with temperature boundary conditions can be 
written in the form [4, p. 1241 

x “g, sin (nno sin (nr&) eeOn’n*(i-i), 

which is an infinite series involving four variables. 
Notice that in the unsteady case the temperature at 
the interface is no longer a constant but a function of 
time involving r and c as parameters. By using the 
procedure developed for steady-state problems, a 
Fredholm integral equation of the first kind with the 

temperature at the interface as the unknown function 
can be derived. The solution of this integral equation 
is not trivial. Moreover, the Green’s Representation 
in this case is much more complex than for steady 
cases. It involves not only the convolution of the 
Green’s function and initial or boundary condition 
terms, but also has integral terms involving tem- 
perature and Green’s function and their derivatives 
evaluated at the interface. Solving unsteady heat con- 
duction problems in composite rods by using unsteady 
Green’s function will be complex. Based on this obser- 
vation, a steady-state Green’s function can be used 
to solve the unsteady problem by viewing the term 
o(LU’/at) in the governing equation as an internal 
source. For example, with Dirichlet boundary con- 
dition, the Green’s Representation becomes 

T(R, t) = 
S’ 

-&5> t)G(R, 5) d5 
0 

If heat generation also exists, the integral would 
include an additional source function. Using a back- 
ward differencing scheme to approximate f in equa- 
tion (49), one obtains 

T(R,t) = -; 
s 

r(5, t)G(R, 5) d5 
0 

Is- ’ 
+t rJ s 

T(5, t - WW, 5) d5 

which is a Fredholm integral equation of the second 
kind for the unknown temperature T(R, t). 

The approach explained above is now used on an 
n-block composite rod. A quadrature procedure is 
performed to solve the integral equation and a set of 
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algebraic equations is obtained in the matrix form 

Fi’(R, ti) = QT(R, ti- ,) +AB, (51) 

where B is a matrix of boundary temperatures and 
A a matrix involving R,. The matrices T(R, tj) and 
T(R, t,_ ,) are the temperatures at each point and time 
levels j and i- 1, respectively. The elements of matrix 
Q can be expressed as 

where k indicates the number of block, and i = 1, 
2 I..., M- 1. The P matrix is given by P = E+Q, 
where E is the unit matrix. The second term on the 
right hand side of equation (51) reflects the influence 
of the boundaries. The fact that the form of the 
Green’s function shows up in the coefficient matrices 
P and Q reveals that the Green’s function plays an 
impo~ant role in the algebraic system for unsteady 
problems. Similar results are obtained for the other 
boundary conditions. 

NUMERICAL RESULTS 

To verify the present solution for unsteady heat 
conduction in composite rods, an exact analytical 
solution for a two-block composite rod is solved by 
Laplace transforms [2]. A corresponding numerical 
model of a two-block composite rod is chosen (with 
R, = 1.0, R, = 0.5 and TV, = 5.0, cr2 = 1.0). Blocks 
I and 2 are divided into 100 and 50 subintervals, 
respectively, so AR, = AR2 = 0.01. Figure 2 shows a 
comparison between the exact and DEM solutions for 
temperature distribution vs R for the two different 
times of t = 0.5 and t = 1.0. The time step is 
At = 0.025. The plot shows that the two solutions are 
very close when t = 0.5. When t = 1.0, the difference 
between these two solutions is not detectable on this 
figure. 

1.0 

0,s 

g 0.8 

$ 0.7 
b 
F$ 0.6 

s I 0.5 

c 0.4 
.o 
t E 0.3 

6 0.2 

0.1 

0.0 

-exact solution 
OEM solution 

i 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

Dimensionless thermal r&stance R 

FIG. 2. Comparison between exact and DEM solution for 
two-block rod. 

AR1 =0.02 
AR2=0.02 

‘\ 
0.025 i 

Q At=0.0125 

k 
+ At=0.02 

‘\ -D At =0.025 
0.020 \\ -0. At=0.05 

4. ‘k. * At=O.l 

0.000 [, I ’ o ’ ’ j ’ ’ ’ I ’ ’ j a ’ ’ 4 * ’ 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Dimensionless time t 

FIG. 3. MSR error vs time for two-block model. 

To study the properties of the numerical solution, 
the mean square root error (denoted by MSR error) 
is calculated for many cases. Figure 3 is a plot for a 
given AR of 0.02. There are five curves corresponding 
to At = 0.0125,0.020,0.025,0.050,0.100, respectively. 
The MSR error depends on t, AR, and At and is a 
decreasing function oft. For the case of AR = At and 
both are less than 0.025, the MSR error is within 
the range of 0.001 to 0.01 for t > 0.1. This is quite 
acceptable. 

To show all the capabilities of the present formu- 
lation, a five-block composite rod subject to Dirichlet 
boundary conditions is solved. The numerical steps 
are chosen as AR = 0.01 in each block and At = 0.025. 
Figure 4 shows the results for t = 0.2, 0.4, 0.6, 0.8, 
1 .O, Figure 5 shows the same results vs X, the physical 
space, for the same conditions but later time t = 4.0, 

6.0, 8.0, 10.0 to see the tendency to approach the 

1.0 

0.9 

0.8 
I- 
a, 
5 0.7 

2 
$ 0.6 
E 

; 0.5 

S 
= .o 0.4 

E 
g 0.3 
6 

0.2 

0.1 

0.0 

1 
$ 

AR=O.Ol 

_f At =0.025 
\\% 

-t=0.2 

0.0 0.5 1.0 1.5 2.0 2.5 

Dimensionless thermal resistance R 

FIG. 4. Temperature vs R for five-block model. 
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0.9 

0.6 
I- 

5 0.7 
8 
k 0.6 
E 

; 0.5 

a, 
= .o 0.4 

F 
f 0.3 
a 

0.2 

At=0.025 
t=drmensionless time 

-steady-state 

perature expressed in the terms of Green’s function. 
The Green’s function used in this mapped space is a 
single function and can be obtained analytically by 
the superposition procedure for various boundary 
conditions. The Green’s function defined on the orig- 
inal physical space is a function matrix that can be 
constructed in terms of eigenfunctions [3, p. 6041. 
Since the eigenvalues for an inhomogeneous medium 
are not easy to obtain, the present approach simplifies 

the problem. For steady-state heat conduction prob- 
lems in composite rods, this method gives analytical 
solutions that are easier to evaluate for the tempera- 
ture, compared with other analytical methods. 

0.1 

0.0 

For time dependent problems, steady-state com- 

posite-media Green’s functions and a finite difference 
scheme can be used to reduce the partial differential 
equation to a set of algebraic equations. The Green’s 
function and boundary condition relationships are 

retained in the resulting algebraic equation. Com- 

putational examples show that this method produces 
accurate solution when compared with certain simple 
existing exact solutions. The numerical program for 
any n-block composite rod is easy to implement and 
the computation is stable. The error analysis con- 
firmed the concept that minimum error is obtained 
when At = AR. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

Dimensional physical space x 

FIG. 5. Unsteady DEM and analytical steady solution 

steady-state. In this physical variable the slope of the 
temperature is not continuous. Since no exact solution 
for this case is available, a comparison between the 
unsteady and the corresponding steady-state solution 
given by the solid line is made in Fig. 5. These results 
show that the unsteady solution approaches the 
steady-state solution asymptotically. 

The last example is a square plate with unit sides 

made of two different materials. Each region has a 
width 0.5 m, with the left hand side region having 
k = 1.0 and the right hand side region having 
k = 10.0. The two lateral surfaces are insulated such 
that the exact solution (for steady-state) can be 
obtained. The other two sides designated a and b are 
subject to a prescribed temperature, T, = lOO”C, and 
heat flux qb = 50 W m- ‘, respectively. Comparisons 

between the results from the present method, bound- 
ary element method and the exact steady-state analy- 
sis [ 1 l] is given as follows : 

Exact DEM BEM 

AT, = 25.OO”C AT, = 24.96”C AT, = 24.72”C, 

ATb = 27.5O”C ATh = 27.46”C AT,, = 27.2l”C, 

where AT, and ATb are the temperature increases at 
the interface and the right hand boundary, respec- 
tively, based on the temperature at the left hand 
boundary. The relative error for temperature at the 
interface is 0.16% for the DEM and 1.12% for the 
BEM. 

CONCLUSIONS 

The preceding work shows that the Green’s func- 
tions method is useful in solving one-dimensional heat 

conduction problems in discretely inhomogeneous 
media. By stretching the space variable, a steady-state 
heat conduction problem defined for inhomogeneous 
rods can be converted to the same problem in homo- 
geneous rods. Therefore, the Green’s Representation 

can be used for inhomogeneous regions and the tem- 
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